A new method for computing Moore–Penrose inverse matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient method for computing the inverse of arrowhead matrices

In this paper we propose a simple and effective method to find the inverse of arrowhead matrices which often appear in wide areas of applied science and engineering such as wireless communications systems, molecular physics, oscillators vibrationally coupled with Fermi liquid, and eigenvalue problems. Amodified Sherman–Morrison inversematrix method is proposed for computing the inverse of an ar...

متن کامل

Computing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method

A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...

متن کامل

New inverse data for tridiagonal matrices

We introduce bidiagonal coordinates, a new set of spectral coordinates on open dense charts covering the space of real symmetric tridiagonal matrices of simple spectrum. In contrast to the standard inverse variables, consisting of eigenvalues and norming constants, reduced tridiagonal matrices now lie in the interior of some chart. Bidiagonal coordinates yield therefore an explicit atlas for TΛ...

متن کامل

A New Method for Computing Determinants By Reducing The Orders By Two

In this paper we will present a new method to calculate determinants of square matrices. The method is based on the Chio-Dodgson's condensation formula and our approach automatically affects in reducing the order of determinants by two. Also, using the Chio's condensation method we present an inductive proof of Dodgson's determinantal identity.

متن کامل

A mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices

In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2009

ISSN: 0377-0427

DOI: 10.1016/j.cam.2008.10.008